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Abstract. The multiplication of (large) matrices allocated evenly on Boolean cube config- 
ured multiprocessors poses several interesting trade-offs with respect to communication time, 
processor utilization, and storage requirement. In [7] we investigated several algorithms for 
different degrees of parallelization, and showed how the choice of algorithm with respect to per- 
formance depends on the matrix shape, and the multiprocessor parameters, and how processors 
should be allocated optimally to the different loops. 

In this paper the focus is on expressing the algorithms in shared memory type primitives. 
We assume that all processors share the same global address space, and present communication 
primitives both for nearest-neighbor communication, and global operations such as broadcasting 
from one processor to a set of processors, the reverse operation of plus-reduction, and matrix 
transposition (dimension permutation). We consider both the case where communication is 
restricted to one processor port at a time, or concurrent communication on all processor ports. 
The communication algorithms are provably optimal within a factor of two. We describe both 
constant storage algorithms, and algorithms with reduced communication time, but a storage 
need proportional to the number of processors and the matrix sizes (for a one-dimensional 
partitioning of the matrices). 

1    Preliminaries 

Throughout the paper, N = 2n denotes the number of processors of an n-dimensional Boolean 
cube, or n-cube. With respect to algorithms and data structures we factor N as Ni x N2 

(2ni x 2n2) for two-dimensional partitionings of matrices, or as N{ X N^ x N£ (2nl x 2na x 2na) 
for three-dimensional partitionings (defined later). We consider the matrix operation A <- CxD, 
where all matrices are dense, C a. P x Q matrix, D a Q x R matrix, and A a P x R matrix. 
We present algorithms for different initial and final allocations of the matrices: one-dimensional 
(column or row), two-dimensional (block), and three-dimensional partitionings. The two initial 
matrices C and.X» and resulting matrix A are assumed to be distributed among all the processors 
in the same manner, except in the three-dimensional case. 

A matrix element is assigned to only one processor initially. With P, Q, and R being powers 
of two, P = 2*\ Q = 2», and R = 2r, matrix element ctJ- of matrix C, 0 < t < P, 0 < 
j < Q, is assigned to a processor as shown in Table 1 for one- or two-dimensional partitionings, 
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Part. Storage Encoding Processor address 

column 
consec. binary Uq-ljq-2••-jq-n) 

Gray (G(i,-ii,_2...j',-n)) 
cyclic binary (j'n-1 Jn-2 • • • Jo) 

Gray {GUn-lJn-2 • • Jo)) 

2-dim. 

consec. 
binary (ip-lip-2 • • • »p-n, 

3q-\Jq-2 ' • •3q-n7) 
Gray (G(Zp_1ip_2...tp_ni)|| 

G(Jq-lJq-2--jq-ni)) 

cyclic 
binary (*ni-l*m-2 •••*() 

jnj-l jn2-2••.Jo) 
Gray (G(ini_iiRl-2...to)|| 

Gr(jn2-lJn2-2 • • -Jo)) 

Table 1: Various ways of assigning matrix elements into processors. 

consecutive or cyclic storage [6], and binary or Gray code encoding [10,6]. In the two-dimensional 
partitioning, each column (row) is assigned to Ni (N2) different processors. The row partitioning 
is obtained by replacing (j,q) by (i,p). By replacing (i,j,p,q) by (j,k,q,r) or (i,*,p,r), the 
processor assignment for matrix element djk (of D) or a,-* (of A) is obtained. 

For a three-dimensional partitioning, matrix C is partitioned as JV£ block columns and matrix 
D is partitioned into N$ block rows. Each block column of C and each block row of D are further 
partitioned into N[ x N£ blocks. The resulting matrix A can be partitioned into N{ x N^ blocks, 
or as N[N£ x N'2 blocks, or into a form in-between these forms with the same communication 
complexity. If the matrices C and D are initially partitioned into a.NixN2 processor array, then 
some communications are required to rearrange the data allocation for a matrix multiplication 
in which all three nested loops in a matrix multiplication algorithm (expressed in a conventional 
language) are parallelized. This communication has a data communication time that is of lower 
order than the data communication for the matrix multiplication, except if there are very few 
elements per processor. 

In the following, all algorithms are described in a Crystal-like notation [2]. Each instruction is 
denned as a function. By interpreting the first one, two, or three parameters as processor identi- 
fiers) in the one-, two-, or three-dimensional partitioning cases, parallel codes for the algorithms 
are obtained. The communications are specified assuming a global address space. The processor 
indices are part of the global address. For a naive implementation of the communications, for 
instance by using a noncombining router, and without using multiple paths between pairs of 
processors, efficiency may be lost due to poor scheduling (collisions), or poor path selection (non- 
minimum path lengths, single paths). We expand the communication primitives (specification) 
into a sequence of nearest-neighbor communications, also described in the Crystal-like notation. 
Execution of the communication code replaces the high-level communication specification. The 
communication primitives we use are all-to-all broadcasting on a (sub)cube, all-to-all reduction 
(in a divide-and-conquer manner) [9], and matrix transposition (dimension permutation). 



In the Crystal-like codes each function of / parameters may be optionally followed by an 
expression " over domaimx domain2 x ---x domain/", where domain,- is the domain of the 
ith parameter. [x,y], y > x, denotes the set of integers {x,x + l,...,y}, and [x,y) denotes 
{x, x +1,..., y -1}. The statements enclosed between < and > form a conditional statement. 
For example, 

< cond\ —► resulti, 
cond.2 —► result^, 
else —► result^ >, 

reads as "if condj then resulti, else if cond2, then result2, else result^. \f [f(j)*g(j)\0 < j < x] 
denotes Ei=o(/(J) * 9Ü))- We use c(i,j), 0 < i < P, 0 < j < Q, to denote the matrix element 
at the tth row and jth column of C. d(j,k) and a(i,k) are similarly denned. For matrices 
distributed over a set of processors, in our case a Boolean cube, it is more convenient to identify 
a matrix element by processor address, and the relative indices of the local submatrix. Ic, Id 
and la are used to denote the local submatrices of C, D, and A, respectively. 

We use Q and a to distinguish between binary encoding and Gray code encoding of the 
processor id (pid), i.e., a = pid and a = G{pid), where G is the binary-reflected Gray code 
encoding function. 

For the analysis we denote the communication packet size by B, the communication start-up 
time with r, the time for the transmission of an element by te, and the time for an arithmetic 
operation by ta. For the communication system we consider one-port communication, for which 
communication only can take place on one port at a time, and n-port communication, for which 
all ports on each processor can be used concurrently. 

2    Communication primitives 

The communication routines we use for matrix multiplication on the Boolean cube are all-to- 
all broadcasting, all-to-all reduction and matrix transposition. All-to-all broadcasting and the 
reversed operation all-to-all reduction are described in detail in [9,11]. Matrix transposition 
with one-dimensional partitioning has the same communication pattern as all-to-all personal- 
ized communication]?), also known as complete exchange [11]. With a two-dimensional square 
partitioning into VW X VN blocks, optimal algorithms are described in [8,11]. For the transpo- 
sition of a matrix partitioned into Ni x N2 blocks, one can combine the one-dimensional matrix 
transposition algorithm with the algorithm for the transposition of a two-dimensionally square- 
partitioned matrix. The communication complexities of various algorithms are summarized in 
Tables 2, 3 and 4. Note that the complexity of the all-to-all reduction is the same as that of 
all-to-all broadcasting, if the number of elements per processor before the reduction is the same 
as the number of elements per processor after the broadcasting. 



Model Algorithm Element transfers min start-ups 
one-port SBT (N - 1)M n 
n-port nRSBT n n 

Table 2: Communication complexity of all-to-all broadcasting on an n-cube with. M elements 
per processor initially. 

Model Algorithm Element transfers min start-ups 
one-port SBT (JV-I)A/ n 
n-port nRSBT «*S«* n   " 

Table 3: Communication complexity of all-to-all reduction on an rt-cube with M elements per 
processor initially. 

Model Algorithm Element transfers min start-ups 
one-port SBT nM 

2 n 
n-port nRSBT 

2 n 

Table 4: Communication complexity of all-to-all personalized communication with M elements 
per processor initially. 



2.1    One-dimensional Matrix Partitionings 

The code for all-to-all broadcasting based on JV translated Spanning Binomial Trees (SBT's) [9] 
with one-port communication is described below. 

/* SBT broadcasting. */ 
/* Row direction, one-port, binary enc. */ 
lcJ>rdl(a, i,f, t) over [0 : JV) X [0 : P) x [0 : 2<g) x [0 : n] = 

<t = 0-Wc(a,i,i'), 
else —* 
<0<j'< 2*-l# - lcJ>rdl(a,i,f,t- 1), 

/* Get from (t - l)th nbr and append. */ 
else -> lcJ>rdl(a®2t-1,i,j'-2t-1%,t-l)», 

/* Order the JV blocks by pid. */ 
lcJ>rd(a, i,j) over [0 : JV) x [0 : P) x [0 : Q) = IcJ>rdl(a, i,j © o#, n) 

For Gray code encoding, a is replaced by a and lcJ>rd is redefined as: 

/* Order the JV blocks by G(pid). */ 
lcJ>rd(a, i,j) over [0 : JV) x [0 : P) x [0 : Q) = IcJ>rdl(&, t, (G( [f J ) © d)£ + j mod #, n) 

With n-port communication, all-to-all broadcasting based on JV distinct translations of n 
Rotated Spanning Binomial Trees (nRSBT), Spanning Balanced n-Trees (SBnT) and n Edge- 
disjoint Spanning Binomial Trees (nESBT) [9] are all optimal within constant factors. The 
algorithm for nRSBT broadcasting is: 

/* nRSBT broadcasting. */ 
/* Row direction, n-port, binary enc. */ 
lcJ>rdl(a, u, i',j', t) over [0 : JV) x [0 : n) X [0 : £) x [0 : 2*£) x [0 : nl = 

<< = 0-Wc(a,u£ + »',/), 
else —♦ 

< 0 < / < 2l~l% - lcJbrdl(a, u, i',j', t - 1), 
else -^/cJ»rdl(a©2(u+<-1)mod'l,ti,i',/-2<-1g,<-l)», 

lcJ>rd(a, i,j) over [0 : JV) x [0 : P) x [0 : <2) = 
lcJ>rdl(a, L^J,« mod £, (*A(|_£|, L$J)©*)&+ j mod $,») 

With one-port communication, the code is described below. The code for n-port communi- 
cation is included in appendix A. 



/* SBT transpose. */ 
/* Column partitioning, one-port, binary encoding. */ 
lcJxpl(a,i',j,t) over [0 : N) x [0 : £) x [0 : 2*#) x [0 : n] = 

<t = 0-Wc(a,t',j), 
L5Ä« J mod 2 = 0 - 

< 0 < j < 2«-1 jj - lcJxpl(a,i',j,t- 1) 
else ->lcJxpl(a®2n-t,i',j-2t-1%,t-l)5>, 

else —► 
<0<j< 2'-1 g - /cJzpl(a 0 2n"', »' + §,j, t - 1) 

else -*/cJxpl(a,t' + J,J - 2t"1^,t - 1) >>, 
/cJxj>(a,i',j) over [0 : iV) x [0 : £) x [0 : C?) = /cJxj>l(a,t',i,n) 

With one-port communication, the code is described below. The code for n-port communi- 
cation is included in appendix A. 

/* SBT reduction. */ 
/* Between columns, one-port, binary encoding. */ 
lajred l(a, i, k', t) over [0 : N) x [0 : P) x [0 : £) x [0 : n] = 

< t = 0-Wa(a,i,Jfe/), 
L?M mod 2 = 0 — /ajredl(a, i, k', t - 1) + /a.re<fl(a © 2n~*, i, k', t - 1), 
else — lajredl(a,i,k'+$,t-l) + /a_re<fl(a@ 2n~t,»,fc' + §,t - 1) », 

la.red(a,i,k1) over [0 : N) x [0 : P) x [0 : §) = lajredl(a,i,k',n) 

2.2    Two-dimensional Matrix Partitionings 

All-to-all broadcasting based on the SBT and nRSBT routings within a column or row subcube 
are the same as in the one-dimensional case, see appendix A. 

Transposing a P x Q matrix partitioned into Nx x N2 blocks, implies that the processor 
that holds block (i,j), 0<i<Nu0<j< N2, will hold block (j,0 after the transposition. 
For convenience, we assume that the shape of the submatrix denned by a block changes from 
AT x & to 7% x $ (instead °f changing to a ^ x ^ submatrix). The transposition can 
be decomposed into two phases. In the first phase, there are 2'n*-nil subcubes, such that each 
subcube executes a transposition of iain{Nu Ar

2)xmin(iV1, N2) blocks. In the second phase, there 
are 2n_ "»(»».»a) subcubes, such that each subcube executes a one-dimensional transposition. 
The communication complexity is derived in [7]. The code for one-port communication is given 
below. 

/* SBT tranpose alg. with Ni x N2 partitioning. */ 
f{t) over [0 : n] = 

< <<2min(n1,n2)-» 1, 
m > n2 -»■ 2t-2min(ni>n2), 



else -> 22min(ni'n2)-* >, 
lcjtxpl(aua2,i\j',t) over [0 : N%) x [0 : N2) X [0 : /(*)£) X [0 : j^) x [0 : n] = 

<t = 0-*/c(a!,a2, *',/), 
< < 2min(ni,n2) -* 

/* two-dimensional transpose. */ 

< Ly£W mod 2 = LjsSfod mo<* 2- 
< < mod 2 = 1 -».leJxpl(ai © 2n»-r'/2l,a2, i',j',t - 1) >, 

else —» 
< t mod 2 = 0-» leJxpl(aita2 © 2n*-W2l,i'J',t - 1) », 

/* one-dimensional transpose. */ 
»i < n2 —► 

< pSi^ mo<i 2 = o -► 

< 0 < f < 2*'-^ - /cJxpl(a1,aa,i
/,i',t - 1), 

else -* /cJxpl(ai,Q2 © 2n-t,i'J'- 2t'-t$,t - 1) >, 
else —* 

< 0 < f < 2*'-^ - lcJxpl(aua2 © 2»-«,t'+ j&r.i'.t - 1), 
else -> /eJ*pl(a1,a2,t' + j^r.j'- 2*'"1 £,« - 1) », 

else —* 
< pSiij mod 2 = 0-» 

< 0 < i' < 2*'-1^- - lcJxpl{aua2,i',j',t-l), 
else - 7cJapl(ai © 2n~<, a2,i' - 2t'-1-fc,j',t - 1) >, 

else —♦ 
< 0 < i' < 2t'-1^- - Zctepl(ttl ©2»-',a2,i',j' + y&^t- 1), 

else -»/cJxpl(Qn,a2,«'- 2t'-1£,j' + j^r»* " *) >» 
where t' = t-2 min(ni, n2), 

lcdxp{aua2,i',j') over [0 : jVa) x [0 : N2) x [0 : £) x [0 : •$•) = /cJxplCaj,^,*', j',n) 

With n-port communication, one can either run the n-porf version for the two phases sepa- 
rately, or pipeline the two phases. However, by treating the transposition as a stable dimension 
permutation [4,5] and employing one of those algorithms a communication complexity lower 
than that of the above algorithm can be obtained. The dimension permutation algorithm is 
based on the fact that the two phases can be reversed, or mixed, preserving the permutation. 

3    Matrix multiplication 

3.1    One-dimensional partitioning 

We consider column partitioning. For row partitioning, similar algorithms can be derived. 

• Algorithm .4(-,l,l).   Compute A in-place by broadcasting of C from every processor 
that has elements of C to every processor that has elements of D. Processor a = PID(j) 



Column Partitioning: 
M. i 11 •    r    n    brd- c» T. r    n     mpy" W   >• 

A(.,l,4):    C.9)D.aÄ4c.a)23a.^I/i;.^^4 

Row Partitioning: 

A(-, 1,1):    Ca„ i?a. =^0> C, i?„ OsM> AQm 

A{-, 1,3):    C«,2?« ^=^4 C„f ^ =^0> C.„Z>.a 3^ ^ *E^ ^ 
red. A, I 

■am 

Figure 1: Notation summary of algorithms for one-dimensional partitioning. 

computes OD(*, Lj^j-J) for all j mapped to a, where PID is the allocation function as 
described in Table 1. 

• Algorithm A(-,l,2). Compute A by a transpose of C and broadcasting of CT from every 
processor that has elements of CT to every processor that has elements of D. Processor 
a = PID(j) computes CD(*, [jirr\) for all j mapped to a. 

• Algorithm A(-,l,3). Compute A by a transpose of C, broadcasting of D from every 
processor that has elements of D to every processor that has elements of CT, and transpose 
Ar. Processor a = PID(j) computes C([-JTT\,*)D. 

• Algorithm A(-,l,4). Compute A in-space by a transpose of D, and reduction of partial 
inner products of A. 

The algorithms are identified by A(number of ports used concurrently, number of loops par- 
allelized, algorithm identifier). Algorithm A(.,l,2) is clearly inferior to algorithm A(-,l,l) with 
respect to communication complexity, and is not further considered for the one-dimensional 
partitioning, but will be considered for the two-dimensional partitioning. For row partitioning 
the roles of C and D are interchanged. Figure 1 characterizes the basic algorithms, the corre- 
sponding algorithms for row partitioning is also included for comparison. The two subscripts 
denote the ordinal numbers of block rows and block columns. The superscript denotes the ordi- 
nal number of the partial inner product result. The number in the square brackets (eg. [R] in 
A(-,l,l)) is the number of processors that minimizes the arithmetic time for each algorithm. 

A complete matrix multiplication algorithm based on rotations of the matrix C is given 
below: 

/* A Rotation Algorithm A(l,l,l). */ 
/* Column partitioning, Gray code encoding. */ 
/c(d, t,/,i) over [0 : N) x [0 : P) x [0 : #) x [0 : JV) = 



<* = 0-+c(i,d# + /), 
else -♦ lc((ä + 1) mod N, ij', t - 1) >, 

W(d,i, *') over [0 : N) x [0 : Q) x [0: jj) = d(j, d# + *'), 
la(a,i,k',t) over [0 : N) x [0 : P) x [0 : §) x [0 : JV] = 

< * = 0 -+ 0, 
else - /a(d, t, k', t - 1) + (\+ [/c(d, ij\ t - 1) 

* 7d(d, ((« + *- 1) mod J\T)g + j', fc')|0 < / < g]) >? 

a(i, *) over [0 : P) x [0 : R) = /a( |_^J,i, k mod g, JV) 

A naive implementation of the above code may use more storage than necessary. For instance, 
each processor needs to store all the N column blocks of C. However, a reasonable compiler can 
resolve this problem by deallocating unused space, or by using shared variables. 

Note that the rotation operation implies nearest-neighbor communication, if d and (d + 
1) mod N are in adjacent processors. Since d is the Gray code encoding of the processor id, 
i.e., the jth block column is stored in processor pid with d = G(pid) = j, rotation of C implies 
nearest-neighbor communications. For binary encoding, i.e., the jth block column is stored in 
processor a = j, we redefine Ic and la as follows: 

/* G(t) is the binary-reflected Gray code of t. */ 
<?(<) = <®UJ, 
/* G'1 is the inverse function of G. */ 
G-\t) =< t = 0 -> 0, 

else ->*e<y-J(lll)>, 
lc(a, i,f, t) over [0 : N) x [0 : P) x [0 : j}) x [0 : N) = 

<* = 0-c(z># + /), 
else -> IciG-^Gia) + 1) mod N),i,f,t- 1) >, 

la(a, i, k', t) over [0 : N) x [0 : P) x [0 : jj) x [0 : N] = 
< t = 0 -» 0, 

else - /a(a, i, k', t - 1) + (\+ [/c(a, £,/, t - 1) 
* ld(a, G((G-\a) + t-l) mod JV)$ + /, fc')|o < f < #]) > 

Instead of all-to-all broadcasting through rotations a Gray code exchange algorithm can be 
used 

/* A Gray code Exchange alg. A(l,l,l). */ 
/* Column partitioning, binary code encoding. */ 
/* T(t) is the index of the «h transition bit in the Gray code 

on n bits = the number of trailing l's. */ 
T(t) =< t mod 2 = 0^0, 

else -l + r(L§J)>, 
lc(a, i,f, t) over [0 : N) x [0 : P) x [0 : g) x [0 : N) = 

<f = 0-c(z,a$ + /), 



else -+ lc(a © 2T(t_1), i,j\ t - 1) », 
ld(aj, k') over [0 : N) x [0 : Q) x [0 : £) = d(j, a# + *'), 
/a(o, i,k',t) over [0 : JV) x [0 : P) x [0 : §) x [0 : N] = 

< i = 0 -► 0, 
else - /a(a, i, *', * - 1) + (\+ [h(a, i, f, t-1) 

* K«, (« © G(* - 1))# + /, *')|0 < j' < &]) », 
a(i, k) over [0 : P) x [0 : R) = la(|^jjj, t\ Jfe mod J, JV) 

For Gray code encoding, the Gray code exchange algorithm can also be used. The code is 
similar and is included in appendix B. Note that the rotation algorithm, and the Gray code 
exchange algorithm can be viewed as one-dimensional versions of Cannon's [1] and Dekel's 
[3] algorithms, respectively. The encodings only affect which N block rows of D within each 
processor interact with the current block column of C. 

In the case communication can take place concurrently on all the ports of a processor, the 
data set for the matrix C is partitioned into n equal pieces. Each such piece is broadcast through 
a unique path. In the case of the Gray code exchange algorithm the paths are obtained through 
rotation of the dimensions, such that if the edges in dimension T(t) are used by path 0 during 
step t, then path u uses the edges in dimension (T(r) + u) mod n during the same step. 

/* A Gray code Exchange alg. A(n,l,l). */ 
/* Column partitioning, binary code encoding. */ 
lc(a,u,i',j',t) over [0 : N) X [0 : n) x [0 : £) x [0 : $) x [0 : N) = 

else -» lc(a © 2(r('-1)+u)'n°<*», u, i',j', t - 1) >, 
W(o, j, *') over [0 : N) x [0 : Q) x [0 : §) = d(j, a§ + '&'), 
/* Shuffle (cyclic left-shift) u steps of t. */ 
sh(u, t) over [0 : n) x [0 : N) = (t mod 2n~u)2u + Ljsb-J, 
la(a, u, i', k', t) over [0 : N) x [0 : n) x [0 : f) x [0 : §) x [0 : N] = 

< t = 0 -+ 0, 
else ^ la(a, u, i', k\ t - 1) + (\+ [/c(a, u, i',f, t-1) 

*ld(a,(a®(sh(u,G(t-l))))% + j>,k>)\0<j'<%])>, 
a(i, k) over [0 : P) x [0 : R) = la( [^J, [^J, i mod f, k mod #, N) 

Both the previous algorithms operate with constant storage requirements. The number of 
communication actions is linear in the number of processors, but can be reduced, if there exists 
sufficient storage to employ a doubling algorithm. Note that by using a high-level specification 
for the communication, the code below is independent of how the communication is realized, and 
hence independent of for instance network topology, and low level communication primitives. 

The initial allocation of C and D, and the final allocation of A are the same for all the 
algorithms for column partitioning that we consider. The allocations are shown below, and 
omitted in the following. 
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/* Initial allocation of C and D. */ 
lc(a,i,f) over [0 : N) x [0 : P) x [0 : Ä) = c(»,a# + j'), 
W(a,j, V) over [0 : JV) x [0 : Q) x [0 : §) = «f(j, a§ + Jfc'), 
/* Final location of matrix A. */ 
a(t, *) over [0 : P) x [0 : P.) = la{ [*%\, i, Jb mod jj) 

/* A Doubling Algorithm A(-,l,l): */ 
/c3rd(a, i,i) over [0 : JV) x [0 : P) x [0 : Q) = fc(L^J, i,j mod #), 
la(a, i, k1) over [0 : N) x [0 : P) x [0 : jj) = \+ [/cJ.rrf(a, t, j) * ld(a,j, Jfc')|0 < j < Q] 

/* Algorithm A(-,l,3): */ 
lcJxp(a,i',j) over [0 : N) x [0 : J) x [0 : Q) = /c(L^J,a^ + i',j mod ^), 
ldJ>rd(a,j,k) over [0 : JV) x [0 : Q) x [0 : R) = W(L^J,i,*mod jj), 
laJxp(a, i', k) over [0 : N) x [0 : jf) x [0 : Ä) = \+ [/cJip(a, i', j) * ldJbrd(a,j, k)\0 <j< Q], 
la(a,i,k') over [0 : JV) x [0 : P) x [0 : #) = /cJxp([^J,zmod £,a# + Jb') 

Table 5 shows the total number of arithmetic operations in sequence. If P, Q, and P all are 
multiples of N, then all three algorithms have the same arithmetic complexity. For P, Q, R > N, 
the differences of the arithmetic complexities are within constant factors. Table 6 shows the 
total number of elements transferred in sequence and the minimum number of start-ups for 
P,Q,R > N. The superscript / on A denotes a linear array algorithm, and superscript c a 
Boolean cube algorithm. For some values of P, Q, and R less than N, the communication 
complexity can be smaller than what is given in the table, because some of the broadcastings 
and personalized communications may complete earlier. The communication complexity for the 
general case is complicated and described in [7]. The data transfer time compares as PQ : QR : 
PR, approximately, by considering the highest-order term of -4(-,l,l), -4(-,l,3) and .4(-,l,4) and 
assuming P,Q,R> N. Note that for £ = jj = $, the communication complexity of .4(-,l,l) 
is less than that of -4(-,l,4), which in turn is less than that of .4(-,l,3). For a detailed analysis, 
see "[7]. 

3.2    Two-dimensional partitioning 

The algorithms described for the one-dimensional case have analogues in the two dimensional 
case.  Algorithm -4(-,l,l) that computes A in-place by broadcasting C in its two-dimensional 
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Algorithm 

■4(-,U) 
A'.M) 
■4(-»M) 

Number of arithmetic operations 

zQ^r^i 
pmx\-i)+p(m+EL,m 

Table 5: The arithmetic time for one-dimensional column partitioning. 

Algorithm 

. 

■^(1,1,1) 
^UM) 
^c(l,l,3) 
^e(l,l,4) 

^(n,l,l) 
^c(n,l,l) 
•4c(n,l,3) 

Element transfers 

(N-i)pm 
jN-l)PW\ 

(*-i)grfli + yrfli + ^r#i 

-4c(n,l,4) 

w - wm + *?m 
ÜN-ppW] 
HN-ppw) 

i/ AT"      i \ ZD r Ä1   I   w r /i T ^-Dfr#i + »TSi 

mm start-ups 

iV-1 
n 

3n 
2n 

iV-1 

3n 
In 

na!?en: ^ communication complexity using one-dimensional column partitioning, assuming 
P, Q, R > N. 
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form requires broadcasting of elements of C along rows and broadcasting of elements of D along 
columns. The two broadcasting operations need to be synchronized in order to conserve storage. 
Cannon [1] has described such an algorithm for mesh configured multiprocessors (that can be 
emulated on Boolean cubes) and Dekel et al. [3] described such an algorithm making use of 
the Boolean cube topology. These algorithms are special cases of matrix multiplication using 
broadcasting algorithms that preserve storage requirements. 

The algorithms corresponding to the four one-dimensional algorithms (>t(-,l,4) has two vari- 
ations) are 

• Algorithm .4(-,2,l). Compute A in-place by broadcasting of C in the row direction and 
D in the column direction such that each processor receives all elements of the rows of 
C mapped into that processor row and all elements of D mapped into the corresponding 
column of processors. Processor ai,a2 then computes C(|r4-rJ,*)£>(*, L"HrrJ) for all i 

mapped to ai and all j mapped to a2. The communication operations are broadcasting 
from multiple sources within rows and columns. 

Algorithm *4(-,2,2). Transpose C, perform a multiple source broadcast along processor 
rows for the elements of CT in that processor row, and accumulate inner products for A 
through multiple sink reduction in the column direction (of the processors). The accu- 
mulation can be made such that -ft- elements for each column of D are accumulated in 
each processor by all-to-all reduction. A processor ai,a2 receives C(*, LT4TJ) during the 

broadcasting operation, then computes the product C(*, [T4TJ )D{ [r^r\, Lf-krJ)- The 

summation over index t is the reduction operation along columns. 

• Algorithm ,4(-,2,3). Transpose C, perform multiple source broadcasting of the elements 
of D within processor rows, accumulate inner products in the column direction. The 
multiple sink reduction is performed such that each processor receives all j£- elements of 
jfc distinct columns of D, such that AT is computed. (Alternatively, the accumulation can 
be made such that max^i <N^ elements for each column are accumulated in a processor 
selected such that the proper allocation of A is obtained through a some-to-all personalized 
communication within rows.) Processor ai,a2 computes £(Lr^J> Lr^J)^(Ll^brJ>*) 

for all t, j such that LphfJ = a2 and Lr^rJ = ai- 

• Algorithm .4(-,2,4). Transpose D, perform a multiple source broadcasting of the elements 
of DT within processor columns, accumulate the partial inner products for elements of 
A by multiple sink reduction along processor rows such that the elements of at most 
r^l columns are accumulated within a processor column. After the transposition and 
broadcasting processor ax, a2 has the elements C( [J-£-TJ , [-rk^l )D( [jiprl, *) for all i such 

that |.7"P"TJ 
= °i aad 3 sucn that LT4TJ = 02. 

Algorithm .4(-,2,5). Transpose D, perform a multiple source broadcasting of the elements 
of C within processor columns, accumulate inner products for elements of A by multiple 
sink reduction along processor rows, such that each processor receives j}- elements of AT 
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Figure 2: Notation summary of the algorithms for two-dimensional partitioning. 

for each of -fa columns of D. Processor ax,a2 computes C(*, |_r^rj)D([-r-Ä-r-J, L-prrJ) 

for all i such that LfsrJ = Qi an<^ J such that [rij\ = a2. 

Figure 2 characterizes the 5 algorithms. The two subscripts in sequence are used to denote 
the ordinal numbers of block rows and block columns of the Nx x JV2 blocks. The "*" sign means 
union of all the block rows (or columns). The superscript denotes the ordinal number of the 
partial inner product result. The number in the square brackets (eg. [PR] in ,4(-,2,l)) is the 
minimum maximum number of processors to minimize the arithmetic time for each algorithm. 
Algorithm ,4(-,2,2) has a matrix transpose in addition to the communication of C as in algorithm 
*4(-,2,l). But, unlike in the one-dimensional case algorithm .4(-,2,2) may have a higher processor 
utilization than algorithm .4(-,2,l). 

The broadcasting in -4(1,2,1) can be realized by a rotation algorithm, which yields Cannon's 
algorithm [l]. Unlike the one-dimensional case, an initial alignment is required in order to 
synchronize between the rotations of C and D. For Nx = N2 = VW, the code is shown below. 
For N\ ^ N2, say N\ > N2, we further partition the submatrix C in each processor into $"- 
blocks and simulate the algorithm for Nx x Nx blocks. Each processor simulates $- processors. 
The code is included in appendix B. 

/* Cannon's Algorithm A(l,2,l): */ 
/* Assume Nx = N2 = y/W, Gray code enc. */ 
/c(di, a2, i',j', t) over [0 : VW) x [0 : VW) X [0 : ^) x [0 : ^-) x [0 : y/W) = 

<t = 0^ ci&r^ + «', &2$- + f), 
else -► lc(au (a2 + 1) mod v^,»',/, t - 1) >, 

ld{ax,ä2,j',k',t) over [0 : >/F) x [0 : y/W) x [0 : JL) x [0 : J-) x [0 : VW) = 
< t = 0 - di&tfa + /, d2^- + kf), 
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else — W((Q! + 1) mod y/N, a2J', k',t - 1) », 
la{&i,a2,i',k\t) over [0 : y/N) X [0 : y/W) x [0 : ^=) x [0 : ^L) x [0 : y/N] = 

< t - 0 -► 0, 
else - /<<*!,&2,?,*',<- 1)+ (\+ [lc(aua2,i'J',t- 1) 

* /<*(<»!, a2,i',*',< - 1)|0 < f < £.]) », 
o(t,fc) over [0 : P) x [0 : R) = 7a_red(L^J, L^J, i mod ^-, ifc mod ^) 

It is also possible to design a matrix multiplication algorithm based on the SBT, or the 
nRSBT communication algorithms. For Algorithm >t(-,2,l), the temporary storage for each 
processor becomes $2 for C and ^ for D, instead of ^f- and ^ for Cannon's or Dekel's algo- 
rithms. However, the number of start-ups is reduced to 0(ni + n2), instead of 0(7VX + N2). Note 
that the initial alignment steps can be eliminated. It is possible to interleave the communication 
and multiplication steps to save half of the storage,. However, an initial alignment is required 
for such an algorithm. 

The initial allocations of C and D, and final allocation of A for the five algorithms below are 
the same, and is described once and for all. For Algorithms -4(-,2,2) and .4(-,2,4), la is replaced 
by lajred. 

I* Initial allocations of C and D. */ 
lc(aua2,i',j') over [0 : Nx) x [0 : N2) x [0 : £-) x [0 : &) = c(ai& + i>,a2$-+j>), 

ld(ai,a2J',k') over [0 : Nt) x [0 : N2) x [0 : £) x [0 : £) = d(ttl& + j',a2$ + F), 
/* Final'allocation of A. */ 
a(i, fc) over [0 : P) x [0 : R) = la( [^\, |^J, i mod £, k mod £) 

/* A Doubling Algorithm A(-,2,l): */ 
lcjrow(aua2,i',j) over [0 : Nx) x [0 : N2) x [0 : £) x [0 : Q) = /C(Q1} L^J,*',:?' mod £), 
ldj:ol(aua2,j,k') over [0 : Nt) x [0 : N2) x [0 : Q) x [0 : £) = W(L^-J,a2,j mod #-,*'), 
7a(alf a2, i', fc') over [0 : Nx) x [0 : N2) x [0 : £) x [0 : £) = 

\+ [/cj-otü(a1,a2,t', j) * /d^oZ(Q1,o2,j,F)|0 < j < Q) 

I* Algorithm A(-,2,2): */ 
lcjtxp(<xx,a2,i',j>) over [0 : Nx) x [0 : N2) x [0 : £) x [0 : $-) = 

/c(L(^Ä + 0/7&J,L(«2^ + /)/ÄJ,K^ + i')mod £,(a2£ + /)mod &), 
/cJip_row(a1,a2,t,.7/) over [0 : N{) x [0 : N2) x [0 : P) x [0 : $-) = 

/cJxpCa^L^J^-mod^,/), 
/o(ai, a2,i, V) over [0 : JV:) x [0 : N2) x [0 : P) x [0 : £) = 

\+ [ZcJ^-rotüCa!, a2, i,i') * /d(Ql, a2, j', fc')|0 < / < $-], 
/a_red(ai,a2, »', *:') over [0 : NJ x [0 : N2) x [0 : £) x [0 : £) = 

\+ [/«»(ai, a2, aa ^ + t', fc')|0 < ai < J^] 
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Algorithm 

^c(-,2,l) 
-4c(-,2,2) 
^c(-,2,3) 
-4C(.,2,4) 

■4C(',2,5) 

Number of arithmetic operations 

(2m - Dmp+f^mm + r&Tr£T 
(2m - im^+iZimm + r&iT£T 
(am - om*+ssihta r£i + mr#T v-1 jy, i       '/1 N, I-"  '  ^t=l I AT, I I 2' I T I JVT I IJv» I 

Table 7: The communication complexity for optimum buffer sizes, two-dimensional partitioning, 
and one-port communication. 

/* Algorithm A(-,2,3): */ 
lcJxp(au a2, i',j') over [0 : N{) x [0 : N2) x [0 : £) x [0 : §-) = 

ML("i& + 0/£|, L("2$ + j')/&J,(a,£ + 0 mod £,(a2£ + j') mod £), 
/rfj-ou;(Qi,Q2,i',A) over [0 : J\rx) x [0 : JV2) x [0 : $-) x [0 : R) = 

'^«i.L*J.j',*inod^)f 

/aJxp(Q!, Q2, »', fc) over [0 : Nt) x [0 : N2) x [0 : £) x [0 : R) = 
\+ [/cJxp(Qi, a2, {',/) * Wj-otoCtt!, a2J', &)|0 < j < $-], 

/a-fcrp_re<i(a:i, o2,»', fc') over [0 : Ni) X [0 : N2) X [0 : jg.) x [0 : $-) = 
\+[/oJxp(oi,a2,«,,a1jg- + *,)|0<ai<JV1], 

/o(ai, a2, i', fc') over [0 : Nt) x [0 : N2) x [0 : £) x [0 : £) = 
ZaJ*p_red(Lori£ + ,-'/£j, [a2£ + *'/#/, (ttl£ + V) mod £, (a2£ + *') mod £) 

Algorithms A(-,2,4) and A(-,2,5) are included in appendix B. 

Table 7 shows the total number of arithmetic operations in sequence. Note that if P, Q 
and R are multiples of Nx and N2, then the arithmetic complexities of the algorithms are the 
same, and indeed the same as for a one-dimensional partitioning. Table 8 shows the total 
number of elements transferred in sequence and the minimum number of start-ups with one- 
port communication. By using some approximations, the values of Ni and N2 that minimize the 
number of elements transferred for different algorithms are shown in Table 9. The resulting total 
complexities are shown in Table 10. By considering the highest-order term, the data transfer 
times compare as Q : P : R : R : P from .4(1,2,1) to -4(1,2,5). It can be shown [7] that for P, 
Q and R being multiples of Ni and N2, the complexities of algorithms -4(-,2,3) and -4(-,2,5) are 
always higher than that of min(.4(-,2,2),.4(-,2,4)),if the optimum values of JVX and N2 are chosen 
for each.algorithm. Table 11 shows the communication complexity with n-port communication 
and optimum packet size. For a detailed analysis and optimum choice of algorithms, see [7]. 
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Algorithm Element transfers min start-ups 
•4C(1,2,1) 

•4C(1,2,2) r^ifftin+r*irÄK^-i) 

-4C(1,2,3) 

A'(l,2,4) 

Ae(l,2,5) 

+rftir&i(*i-i)+r#ir&in 
wirfti»+r#ir*iw-i) 

+r&ir&i(^-i) 
r*irÄi»+r*irftiw-i) 

+mrlri(^-i)+r^ir^in 

n 

2n 

3n 

2n 

3n 

Table 8: The communication complexity using two-dimensional partitioning. 

Algorithm Ni        N2 

-4C(1,2,1) V* /RN 
VT 

^(1,2,2) y/V [RN 

.4C(1,2,3) ^ y/W 
-4C(1,2,4) fPN 

V~3~ V^ 
-4C(1,2,5) [~RN >/¥ 

Table 9: The optimum values of Ni and JV2 for P, Q and Ä being multiples of JV and one-port 
communication. 

Algorithm 

•4C(1,2,1) 
^c(l,2,2) 

-4C(1,2,3) 

A%1,2,4) 

^c(l,2,5) 

2PQR. 

'jFta+jL(2VPR-£$)tc + nT 

2PQÄ 

ffg«. + $,(2JFQ + a^g^X. + 2»r 

F'.+ ;£(2v^+-*"+?;A-,WV + 3»r *g 

Table 10:  The total complexity with optimum values of Ni and N2 for P, <? and R being 
multiples of jV and one-port communication. 
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Algorithm mm communication time 
A%n,2,l) 

M-l 

^+(>/r*irÄK+v^ri5?)a 
+aM£i^+r£ir£i^)t 

>lc(n,2,2) 

>tc(n,2,3) 

^+(MirÄi*c+v^^iF)2 
+(r&ir&i^+r£ir£i^)*e 

-Ac(n,2,4) 

^c(n,2,5) 

+(Vr*irÄi«e+v^riF)» 

Table 11: The communication complexity for optimum buffer sizes, two-dimensional partition- 
ing, and n-port communication. 

3.3    Three-dimensional partitioning 

In the case of a three dimensional partitioning of the Boolean cube each N[ x N'2 subset of 
processors compute the product of a P x §T matrix and a $■ x R matrix. If the matrices 

are initially allocated such that there are distinct submatrices P x -ßr and -ßr x R assigned 

to each set of $■ processors then the multiplication in each subset is the same as in the two 

dimensional partitioning, except that Q is replaced by $-. In addition, there is an accumulation 
phase at the end. The number of arithmetic operations for this part of the computation is 
r^*l r^jl IoS-^3 without any pipelining, and all partial products being accumulated in the same 
way. The matrix A is allocated among jfr processors. If there are several elements of the matrix 
A that are stored in the same processor, then the accumulation can be made faster by using 

all-to-all reduction. The arithmetic complexity becomes J^ r "'y*7 "l*a- The communication 

complexityfor the reduction is Erir^V^l^ + Eäir^l^lr. When ^1^1 > ^, it 
is an all-to-all reduction, and the communication complexity of the reduction is approximately 

C1 ~ ^)I"]|T1 TTVJK + Tüll r Vfl7 lr- For detailed complexity analysis, see [7]. The code is 
given below. 
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/* Algorithm A(-,3,l): */ 
/* Matrix C is partitioned as N{ x N^N£. */ 
lc3(ai,a2,a3,i',j") over [0 : N{) x [0 : N£ X [0 : JVJ) x [0 : ^) x [0 : ^) = 

<°i-fir + *', «3^ + a2j^r + /'), 
/* Matrix D is partitioned as N{N£ x JV£. */ 
ldZ(aua2,a3,j',k") over [0 : N{) X [0 : JVJ) x [0 : JV£) x [0 : j^) x [0 : -gr) = 

/* Broadcast C along N2 direction. */ 
lcZjrow(au o2, a3,»', j') over [0 : N{) x [0 : JVJ) x [0 : JV|) x [0 : ^-) x [0 : $■) = 

/c3(tt1,L^äj,03,»',i'inod3^j)> 

/* Broadcast D along N[ direction. */ 
ld3xol(aua2,a3,j',k') over [0 : N{) x [0 : N$ x [0 : N£ x [0 : $) x [0 : $■) = 

'<O(L£¥äJ.a2,O3,i'mod3^8j,fc0, 
/* Compute partial inner product locally. */ 
laZ(aua2,a3,i\k') over [0 : N[) x [0 : Nfi X [0 : JV£) x [0 : ^) x [0 : $■) = 

\+ [/cSj-otüCa^Qi.as,»',/) * W3-co/(a1,Q2,a3,y
/,A:0|0 < V < §r], * 

/* Reduction along JV3 direction. */ 
la3jred(aua2,a3,i',k') over [0 : N{) x [0 : JVJ) x [0 : JV|) x [0 : £) x [0 : £) = 

\+ [Zo3(Q!, a2, a3, |2g*J £ + i', (a3 mod §)£ + fc')|0 < <*3 < JVJ], 
/* Relabeling processor indices as two-dimensional. */ 
la2(au a2, i', k') over [0 : Nx) x [0 : N2) x [0 : £) x [0 : £) = 

/a3.red(L^J, flj?J, (a, mod jg*)jjfr + a2 mod ^ j',A'), 
/* Resulting matrix A is partitioned as JVi x N2. */ 
a(i, k) over [0 : P) x [0 : R) = 7a2( |^J, L^J, » mod ^, * mod ^) 

Note that in the above algorithm, the matrix A is partitioned into Nx x N2 blocks with no 
extra communication after the reduction step. Depending on how the data set is divided during 
the reduction steps, the resulting matrix A can be partitioned into N{ x N^ blocks, N[N£ x N^ 
blocks, or some blocking scheme in-between those two. 

If the matrices C and D initially are partitioned into i\ri x N2 blocks, then transformations 
are required to change the allocation into N{ x N^ blocks, and N{N£ x N^ blocks, respectively. 
The transformation can be specified as follows. 

lc3(aua2,a3,i'J") over [0 : N{) x [0 : JVJ) x [0 : JV|) x [0 : -fr) x [0 : jfa) = 

'«*(<*$+ L^J.«s$ + L^J,*mrf &,(a2mod ^)^ + A 
/<Ö(alja2,a3,j

w,fc') over [0 : N[) x [0 : Nfi x [0 : JVJ) x [0 : ^) x [0 : $-) = 
ld*(«*§ + Ifffij. «2% + L^J, (ai mod £jp)jfc + » mod * ) 
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4    Conclusion 

We have shown how algorithms for distributed architectures, such as a Boolean cube, can be 
expressed in terms of a shared global address space, and how the translation between local and 
global addresses can be carried out. We have also shown how the network and low level com- 
munication features of the architecture can be encapsulated into generic global communication 
primitives, such as all-to-all broadcasting within a (sub)cube, all-to-all reduction, matrix trans- 
position (dimension permutation). These primitives can either be integrated into compilers, or 
incorporated into the communication system by providing different communication modes. The 
communications would be transparent to the user. The architectural dependence is hidden in 
the communication primitives. The algorithms for matrix multiplication that we have used for 
illustration cover algorithms that parallelize one, two, or all three loops of a matrix multipli- 
cation, and for each degree of parallelization algorithms that are optimal for different matrix 
shapes and architectural parameters. 

Appendix 

A    Communication primitives 

A.l     One-dimensional partitioning 

/* An nRSBT transpose algorithm (column part., n-port). */ 
lcJxpl(a, u, i',j',t) over [0 : N) x [0 : n) x [0 : f) = x[0 : 2*^) x [0 : n] 

<t = 0-+lc(a,i',u§r + j>), 
L2(«-omodnj mod 2 = 0-* 

< 0 < j < 2*~1ßr -> lcJxpl(a,u,i',f,t- 1) 
else -+ lcJxpl(a@ 2^-^modn,u,i',f - 2t~1ß7,t- 1) >, 

else —► 
< 0 <j < 2i~1ßT - lcJxpl(a®2("-t)™dn,u,i'+ £,/,<- 1) 

else — lcJxpl(a,u,i'+ £,/- 2*-1ßr,t - 1) », 
lcJxp(a,i',j) over [0 : JV) x [0 : £) x [0 : Q) = 

lcJxpl(a, L^J mod n, i', [f J & + j mod &,») 

/* nRSBT reduction. */ 
/* Between columns, n-port, binary encoding. */ 
la.redl(a, u,«', k', t) over [0 : N) x [0 : n) x [0 : f) x [0 : §) x [0 : n] = 

<t = 0->la(a,u$ + i',sh(u,l!$\)% + kfmod§), 
L2(»-«°modnJ mod 2 = 0^ lajredl(a, u, *', k', t - 1) + lajredl(a 8 2(u-t>modn, u, i', k', t-1), 
else —la.redl(a, u,»', k' + J, t - 1) + lajredl(a © 2(ti-t)modn, u, i', k' + §, t - 1) >, 
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la.red(a, i, k*) over [0 : N) x [0 : P) x [0 : $) = lajredl(a, $J, i mod £, *', n) 

A.2    Two-dimensional partitioning 

/* SBT broadcasting (row direction, one-port). */ 
/CJ-OW1(QJ, a2,t', j',t) over [0 : Ni) x [0 : N2) x [0 : £) x [0 : 2*^) x [0 : n2] = 

<t = 0-*lc{aua3,i\j')% 

else — < 0 < f < 2*"1 ^ - /crot/jl^!, Q2, i', j>, t - 1), 

else — /cj-ou>l(ai,Q2 © 2*-1,«,,j/ - 2<"1^,t - 1) », 
/CJ-OU>(QI, a2, i',j) over [0 : JVX) x [0 : N2) x [0 : £) x [0 : Q) = /c_rotül(ax,a2, i',j © a2$-, n2) 

/* nRSBT broadcasting (row direction, n-port). */ 
/CJ-OZü1(Q1,Q2,u,i',j',t) over [0 : Ni) X [0 : N2) X [0 : n2) x [0 : ^-) x [0 : 2*£) X [0 : n2] = 

< t = 0 - /c(oi,o2, tt^j- + i', /), 
else - < 0 < j' < 2'-^ -» /croud^, Q2, ti, i',j', t - 1), 

else -* /c_rotül(ai,a2 © 2(u+'-1)m<>dn2,u,i/,i7' - 2t~1-ß-,t- 1) », 
lc^ow(aua2,u,i',j) over [0 : Arj) x [0 : N2) x [0 : n2) x [0 : ^) x [0 : Q) = 

Zej-owlfa, a2, L%^J, •* mod ^, («A(«, [i^j) © a2) JL, n2) 

/* SBT broadcasting (column direction, one-port). */ 
7«fjeo/l(a1,a2,i\Jb',<) over [0 : Nx) x [0 : N2) x [0 : 2'$-) X [0 : #■) x [0 : m] = 

<* = 0-W<f(a1,a2,j',*'), 
else -* < 0 < f < 2*-^ - 7<Lco/l(alf a2, i',**, * - 1), 

else - ldjcoll(Ql © 2*~\ a2, j' - 2t~l&, k', t - 1) », 
M.co/(a1,«2,i,*') over [0 : Nt) x [0 : JV2) x [0 : Q) x [0 : $) = WJarfl(a1,a2,j © a^fc'.m) 

/* nRSBT broadcasting (column direction, n-port). */ 
M-cofl(ai, Q2, u,j', k', t) over [0 : JVX) x [0 : i\T2) x [0 : m) X [0 : 2'$-) x [0 : ^-) x [0 : m] = 

< t = 0 - /d(ai,a2, j',t^ + fc'), 
else -' < 0 < j' < 2'-1^- -* WJco/l(o1,Q2,tt,/,)fc',t - 1), 

else - /^O/^QJ ©2(u+*-1)mod'*Sa2,u,/- 2t-1^-,fc',<- 1) », 
/£ear(ai,a3, «,/,*) over [0 : JVj) x [0 : N2) x [0 : na) x [0 : Q) x [0 : -^-) = 

/«LcrflCax,a2, \^\, V mod ^, (,&(«, [i^J) © aa)#,m) 
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B    Matrix Multiplication 

B.l    One-dimensional partitioning 

/* A Gray code Exchange alg. A(l,l,l). */ 
/* Column partitioning, Gray code encoding. */ 
/c(d, i,j',t) over [0 : JV) x [0 : P) x [0 : #) x [0 : JV) = 

<* = 0-c(:\d# + j'), 
else - lc(G(G~\a) © 2T«-1)), i,j>,« - 1) >, 

ld(&,j, V) over [0 : JV) x [0 : Q) x [0 : §) = d(j, a§ + k% 
la(a, i, k', t) over [0 : JV) x [0 : P) x [0 : jj) x [0 : JV] = 

< * = 0 -► 0, 
else - la(&, i, k', t - 1) + (\+ [lc(a, i, j', t-1) 

* id(&, (d © (* - i))Ä + /, *0|o < / < £])», 
o(i, ft) over [0 : P) x [0 : R) = /a( [^J, z, ft mod #, JV) 

B.2    Two-dimensional partitioning 

The index / in the following code denotes the rank of the ffiffffi blocks within each processor. 
The number of the communication steps after the initial alignment is 2max(JV1, JV2) - 2 in the 
code. It is possible to reduce it to JVa + JV2 - 2 by a more complicated code. 

/* Cannon's Algorithm A(l,2,l): */ 
/* Nmax = maxCJVi, JV2) and JVmtn = min(NUN2). */ 
/c(Ql,a2 /,£'/,*) over [0 : Nx) x [0 : A'2) x [0 : fe*) x [0 : ,£-) x [0 : jg-) x [0 : Nmax] = 

< JVX > JV2 -*• 

<< = 0->C(ai£ + ^a2£+ /$- + ;'), 
/* Initial alignment. */ 

t = 1 - lc(Ql, [ S__^ J,(/ + ax) mod j£,i',j',0), 
/* The last block gets from next proc. */ 
1 = fe " * -* /c(Qi'(a2 + 1) m°d ^2,0, i'J',t- 1), 
/* Other blocks get from right locally. */ 
else -* lc(ai, a2, / +1,:',/, t - 1) >, 

else —► 
<< = 0-c(a1^- + /^ + t',a2^+/), 

* = 1 — /cCai.Conjji + / + a2) mod N2,l,i',j',0), 
else -» /c(ai, (a2 + 1) mod JV2, /, i\ f, t - 1) », 

ZcfCax,a2 /,/ft',t) over [0 : JVl} x [0 : JV2) x [0 : fc) x [0 : jg-) x [0 : ^) x [0 : Nmax] = 
< JVj < JV2 -+ 

<t = 0-^ <*(<*:£+ /£+/,a2£ +ft'), 

«(L—S—T05 —La,, L^^^J mod g,/,*',0), f = 1 
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1 = fc - 1 - W((«l + !) mod *i.«2,0,i',*',t - l), 
else -*W(ai,o2,/ + l,i/,*,,t-l)>, 

else -* 

«< = 0-d(ai£ + j',a2£ + /£ + A:'), 
<=l^W((a2g + / + a1)mod^1,a2,/,/,fc',0), 
else -♦ Zd((on + 1) mod Nx,a2,l,j\k',t - 1) », 

/a(ax,a2,/,i',Ä',0 over [0 : ^) x [0 : N2) k [0 : fc) x [0 : ,£-) x [0 : ,JL) x [0 : i\TroarJ = 
< t = 0 -► 0, 

else -♦ la(aua2,1,?,*',* -1) + (\+ [/c(oi, a2,/, t'J',* - 1) 
* M(ttl,oj,Z,j',fc',i - 1)|0 < / < JJSL]) >, 

a(i, fc) over [0 : P) x [0 : R) = 
< i\Tx > JV2 - i«([^j, [4£j, L^j mod j£,i mod £,* mod A, #,), 

else - /«([i^J, L^J, L^J mod $, t mod £, * mod £, i\T2) > 

/* Algorithm A(-,2,4): */ 
ldlxp{aua2,j\k') over [0 : JVj) x [0 : N2) x [0 : £) x [0 : $-) = 

M(L("i& + J0/&J. L(<*2& + *')/&J,(ai& +/) mod &,(a2£ + *') mod £), 
WJxpj-o»^^.^^ over [0 : N{) x [0 : N2) x [0 : $-) x [0 : R) = 

/<Ltep(a1,L*^J,i',*inod^), 
/a(ai,a2,»',*) over [0 : Nx) X [0 : JV2)-x [0 : £) x [0 : J2) = 

\+ [lc(aua2, i',/) * WJxp.co/(ai, a2,j', *)|0 < j' < ■$■], 
/a_red(ai,a2,t',*') over [0 : Ni) x [0 : JV2) x [0 : £) x [0* ^) = 

\+ [ZoCtti, a'2, i',a2-fc + *')|0 < a'2 < N2] 

I* Algorithm A(-,2,5): */ 
ldJxp{ax,a2,j',k') over [0 : Nx) x [0 : N2) x [0 : §-) x [0 : #■) = 

(«i£ + iO mod $-,(a2£ + &') mod £), 
/cjco/(a1,a2,»,j') over [0 : N{) x [0 : N2) x [0 : P) x [0 : $-) = 

ML^J.^imod &,;'), 
/aJxp(Ql,Q2,i,fc') over [0 : JVi) x [0 : N2) x [0 : P) x [0 : $-) = 

\+ [/<LCo/(ai,a2,«,iO * WJxp(ai,a2,/,fc')|0 < j < jfel 
laJxpjred{aua2,i',k') over [0 : Nx) x [0 : JV2) x [0 : £) x [0 : $-) = 

\+ [/aJxp(ttl,a2, a2£ + i', &')|0 < a2 < J\T2], 
/a(ai,a2, i', k') over [0 : JVj) x [0 : N2) x [0 : £) x [0 : ft) = 

/aJxp-redCLa^ + i'/&J, L<*2& + *7&f,(ai£ + 0 mod £,(a2§ + *') mod £) 
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